Caltech

Neuro-Symbolic Theorem Proving
with Lean

Peiyang Song

California Institute of Technology

psong@caltech.edu

Alpha Geometry 2 Alpha Proof

Approaching the Olympiad gold-medalist standard Score on IMO 2024 problems
30
25.9 42 | TOTAL
40
g
@
=
E 70 Gold
20
5
o 30 e
o 28 points
o o Silver —
= O
O 10 4
g 10 2
0 %
= = 20 Bronze
z g
Other
8] 10
Previous Bronze Silver Alpha- Gold
State-of-the-Art Medalist Medalist Geometry Medalist
0

Our system
Human participant rank

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

Computer-Aided Proofs in Mathematics

Four Color Theorem
Computers check 1000+ configurations

[Appel and Haken, "Every Planar Map Is Four Colorable", 1976]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

Computer-Aided Proofs in Mathematics

L2 -Quantamacazine 0 2 Q

Computer Proof ‘Blows Up’
Centuries-0Old Fluid Equations

By JORDANA ('ELEWICZ

November 16, 2022

For more than 250 years, mathematicians have wondered if the Euler
equations might sometimes fail to describe a fluid’s flow. A new

computer-assisted proof marks a major breakthrough in that quest.

Four Color Theorem Blowup of the Euler Equations
Computers check 1000+ configurations Computers calculate bounds of integrals

[Chen and Thomas, "Stable Nearly Self-similar Blowup Of The 2D

[Appel and Haken, "Every Planar Map Is Four Colorable", 1976] : _ _
Boussinesq And 3D Euler Equations With Smooth Data", 2022]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

Automated Reasoning and Formal Proofs

Formal mathematics

9/5/2024

=} (e){var t=_[el={};
[1])===!188e.stopOnFalse){r=!1;

po=u. 1r&&(s=t,c(r))}

04 u=[1, },disable:
H 04 p. ('
,r={state: 04 n},always:
omise)?e. 0. (n.resolve). (n.re
(){n=s},t[1"%e] [2].disable,t[2][2].
(Yy r=ns yi=ll==r| |e&
(r);r>t;t++)n[t]&8b. (nlt

)[el,r. .cssText=
()),hrefNormalized:

Software verification

Hardware verification

Tutorial on Neuro-Symbolic Theorem Proving with Lean

Cyber-physical systems

Automated Reasoning and Formal Proofs

={h (e){var t=_[el={};
[1])===!188e.stopOnFalse){r=!1;
po=u. 1r&&(s=t,c(r))}

u=[1, },disable:

{ p.)
,r={state: (R n},always:

(). (n.resolve). (n.re
(){n=s},t[1%e]l [2] .disable,t[2] [2].
(Yy r=ns yi=ll==r| |e&
(r);r>t;t++)n[t]&sb. (n[t

omise)?e.

)[el,r. .cssText=
()),hrefNormalized:

Formal mathematics Software verification Hardware verification

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 5

Automated Reasoning and Formal Proofs

* Automated theorem proving

* SMT solvers, model checkers, ATP
systems in first-order logic, etc.

* Minimal efforts from humans
* Limited expressiveness
e Difficult to scale

(E
y 455 'CVC5,

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

Daﬁ]y
WA

Automated Reasoning and Formal Proofs

* Interactive theorem proving
* Proof assistants such as Coq, Isabelle, and Lean

. E . .
xpressive logic, e.g., dependent type theory [Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]

» Successfully used in large formalization projects [Klein et al., "seL4: Formal Verification of an OS Kernel", 2009]

. Leroy, "Formal Verification of a Realistic Compiler", 2008
* Lots of efforts from humans to write proofs [Leroy P]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 7

Automated Reasoning and Formal Proofs

* Interactive theorem proving
* Proof assistants such as Coq, Isabelle, and Lean
Expressive logic, e.g., dependent type theory

[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]
Successfully used in large formalization projects [Klein et al., "seL4: Formal Verification of an OS Kernel", 2009]

. Leroy, "Formal Verification of a Realistic Compiler"”, 2008
Lots of efforts from humans to write proofs [Leroy P]

Proof automation is critical for wider adoption

-

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 8

Automated Reasoning and Formal Proofs

* Interactive theorem proving * Automated theorem proving
* Proof assistants such as Coq, Isabelle, and Lean * SMT solvers, model checkers, ATP
* Expressive logic, e.g., dependent type theory systems in first-order logic, etc.
 Successfully used in large formalization projects * Minimal efforts from humans
* Lots of efforts from humans to write proofs * Limited expressiveness
* Proof automation is critical for wider adoption * Difficult to scale

-

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

Automated Theorem Proving

(n+ 1)n

I+2+t+n="—"- * Generate the proof fully automatically

Automated Theo

1+2+--+n= (n-l—zl)n
/—qupV—lr \
qV—xVy

_ J

Conjunctive normal form (CNF)

9/5/2024

rem Proving

* Generate the proof fully automatically
* Low-level: First-order logic, CNFs, and resolution

Tutorial on Neuro-Symbolic Theorem Proving with Lean

11

Automated Theorem Proving

142 _(n+Dn
et ="" * Generate the proof fully automatically
‘ * Low-level: First-order logic, CNFs, and resolution
/ Resolution
—|C[VPV—|T‘
qV-xVy
pV—arV-xVy =

_ J

Conjunctive normal form (CNF)

9/5/2024

Tutorial on Neuro-Symbolic Theorem Proving with Lean

12

Automated Theorem Proving

142 _(n+Dn
et ="" * Generate the proof fully automatically
‘ * Low-level: First-order logic, CNFs, and resolution
/—qupV—ur \
qV-xVy
pV—er—ley

. J

Conjunctive normal form (CNF)

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

Automated Theorem Proving

(n+ 1n
2

1+2+-+n=
/

—|C[VPV—|T‘

~

qV-xVy

pV—er—ley

. J

Conjunctive normal form (CNF)

9/5/2024

* Generate the proof fully automatically
* Low-level: First-order logic, CNFs, and resolution

Tutorial on Neuro-Symbolic Theorem Proving with Lean

14

Automated Theorem Proving

(n+ Dn
2

142+ --+n=
/

—|quV—|r

~

qV—ley
pV—er—ley

\2-

Conjunctive normal form (CNF)

9/5/2024

* Generate the proof fully automatically
* Low-level: First-order logic, CNFs, and resolution

Tutorial on Neuro-Symbolic Theorem Proving with Lean

15

Automated Theorem Proving

(n+ Dn

1424 4n=
n 2

.
g

—|quV—|r

~

qV—ley
pV—er—ley

\2-

Conjunctive normal form (CNF)

9/5/2024

* Generate the proof fully automatically
* Low-level: First-order logic, CNFs, and resolution
* Main challenge: Large search space

[Haken, “The Intractability of Resolution”, Theoretical Computer Science, 1985]

* Heuristics for pruning the search space
[Kovacs and Voronkov, CAV 2013] [Urban et al. TABLEAUX 2011]
[Schulz et al. CADE 2019]. [Loos et al. LPAR-21]
[Korovin, IJCAR 2008] [Kaliszyk et al. NeurlPS 2018]

Successful examples: Robbins Conjecture
[McCune, “Solution of the Robbins Problem”, 1997]

Intractable for most theorems

Tutorial on Neuro-Symbolic Theorem Proving with Lean

16

Automated Theorem Proving

(n+ Dn

1424 4n=
n 2

.
g

ﬂquV—lr

~

qV—ley
pV—er—ley

\2-

Conjunctive normal form (CNF)

9/5/2024

* Generate the proof fully automatically
* Low-level: First-order logic, CNFs, and resolution
* Main challenge: Large search space

[Haken, “The Intractability of Resolution”, Theoretical Computer Science, 1985]

* Heuristics for pruning the search space

[Kovacs and Voronkov, CAV 2013] [Urban et al. TABLEAUX 2011]
[Schulz et al. CADE 2019]. [Loos et al. LPAR-21]
[Korovin, IJCAR 2008] [Kaliszyk et al. NeurlPS 2018]

Successful examples: Robbins Conjecture
[McCune, “Solution of the Robbins Problem”, 1997]

Intractable for most theorems in math
Lack high-level intuitions of mathematicians

Tutorial on Neuro-Symbolic Theorem Proving with Lean

17

Interactive Theorem Proving

Theorem

4

Proof

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

18

Interactive Theorem Proving

Theorem set_inter_comm (s t : Set a) : s nt =
X
‘ [Set.mem_inter_iff]
' (xs, xt)
(xt, xs)
: (xt, xs)
Proof -

* Theorems/proofs represented formally as programs

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

19

[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]
[Leroy et al., "CompCert - A Formally Verified Optimizing Compiler", 2016]

Interactive Theorem Proving

Formalize

I 1
! |
: . I
Theorem set_inter_comm (s t : Set a) ! !
|
\ |
\ |
X \ 1
- - \
[Set.mem_inter_iff] \ !
\\ |
|
; |
: {xs, xt) ; I
|
(xt, xs) ! |
{Xt XS) 1 Tjﬂi=! &{seézfn(z;é:F?1§§Y£3=f}; :
! : o 04 ()r{ 3;[5, n },disat(:le: 1
[-H P. '
P ro Of (XS ’ Xt) : omise)%:“tate:(). (r(ufﬁesolve)r.]}’awi%ié :
I (n=h E){n:s),t[)"ilrg].disab}i,tlz[:]r:‘(]2 1
1 r3,1=. (r);r>t;t++in[ti&&b. Funct (n[t I
1)[e],r. .cssText= '
1 ()),hrefNormalized: 1
! I
\ Software)
° \\ s
Theorems/proofs represented formally as programs N e .

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 20

Interactive Theorem Proving

Theorem set_inter_comm (s t : Set a) : s nt =
X
‘ [Set.mem_inter_iff]
. (xs, xt)
(xt, xs)
: (xt, xs)
Proof -

* Theorems/proofs represented formally as programs

* Proofs can be checked easily

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

21

Interactive Theorem Proving

Theorem

X X
[Set.mem_inter_iff] [Set.mem_inter_iff]
‘ (xs, xt)
(xs, xt) (xt, xs)
(xt, xs)
. (xt, xs)
Proof (xs, xt)

X

* Theorems/proofs represented formally as programs

* Proofs can be checked easily

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

22

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgcdnn=n

L VIN

Proof assistant

Human

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 23

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgecdnn=n
begin RIS

(cases 1, . ‘. o-casesn TTeee. o PR
L “ . . 1 Qaﬂd
-gcd00=0 k:N & 9.
Fged(k+1)(k+1)=k+1) ﬁ

Proof assistant

Human

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 24

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn=mn := Fgcdnn=n
begin
cases n, m e\\e
(Caaeste gid 17T i00-0] [k » e
1 Fged(k+1)(k+1)=k+1 /

Human unfold ged | —
v L\VN

Proof assistant

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 25

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcdnn =n := Fgcdnn=n
begin /\) \\e
cases n cases n : l Q a
H v >
1 unfold ged }, ___ -gcd00=0 k:N /) Q‘?J
"unfold gcd, I Fged(k+1)(k+1)=k+1) ﬁ

I A -
Human unfold gcdl

I
I unfold gcd
‘uno gc W
: k:N

Fged((k+1)% (k+1)(k+1)=k+1

Proof assistant

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 26

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn =n := Fgecdnn=n
begin /\) \
cases n casesn : e\
,) Q
{ unfold gcd 1}, Fgcd00=0 k:N l/) Q‘?\/
unfold gcd, Fged(k+1)(k+1)=k+1) &

Human feurice mod seis,) unfoldged |

"""""""" unfold gcd _W
(k:N

Fged((k+1)% (k+1)(k+1)=k+1
rewrite mod_self Proof assistant

|
|
|
\ 4

k:N
FgedO(k+1)=k+1

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 27

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn = n := Fgednn=n
begin
cases n, m
{ unfold gcd }, gcd00=0 k:N
unfold gcd, Fged(k+1)(k+1)=k+1
Human rewrite mod_self, unfold gcdl
________________ unfold gcd
apply gcd_zero left| v
end --------------- (kN

Fged((k+1)% (k+1)(k+1)=k+1

rewrite mod_self PrOOf assistant

\ 4

k:N
FgedO(k+1)=k+1

T
! apply ged_zero_left
v

4

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 28

Theorem Proving in Proof Assistants

n:N

theorem gcd_self (n : nat) : gcdnn =n := Fgednn=n
begin

cases n, m

{ unfold gcd }, gcd00=0 k:N

unfold gcd, Fged(k+1)(k+1)=k+1

Human rewrite mod_self, unfold gcd l
unfold gcd

apply gcd_zero_left il

end (k:N
Fged((k+1)% (k+1))(k+1)=k+1
 Efficient decision procedures | ewrite mod self Proof assistant

[Grégoire and Mahboubi, "Proving Equalities in a Commutative Ring Done
Right in Coq", 2005]
 Hammers: outsource to external ATP systems

k:N
FgedO(k+1)=k+1

[Blanchette, et al., "Hammering towards QED", 2016] apply gcd_zero_left

* Proof search within the proof assistant v

Coq’s auto tactic
[Limperg and From, "Aesop: White-Box Best-First Proof Search for Lean", 2023]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 29

Theorem Proving in Proof Assistants

n:N
theorem gcd_self (n : nat) : gcd nn = n := Fgednn=n
begin
cases n, m
{ unfold gcd }, gcd00=0 k:N
unfold gcd, Fged(k+1)(k+1)=k+1
rewrite mod_self, unfold gcd
l unfold gcd
apply gcd_zero_left 1
end (k:N

Fged((k+1)% (k+1)(k+1)=k+1

rewrite mod_self PFOOf assistant

Complementary to formal methods for proof automation v
Learning from human-written proofs k:N
« ~100K proofs in Lean Fged0(k+1)=k+1

* More in Coq and Isabelle 1 apply gcd_zero_left
Machine Math knowledge learned from large-scale pretraining V/
learning * Large language models (LLMs)

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 30

Why is Theorem Proving Important for Al?

The Era of Large Language Models (LLMs)

ZrClaudeé -

) |

Meta & §& Microsoft
INTRODUCING

& GitHub Copi

.

[Wang et al., Voyager, 2023]

[Ma et al., Eureka, 2023]

How many cats are there? What are they doing?

ChatGPT
There are six cats in the image, and they all appear to be looking up at something

out of the frame with interest. Some have their mouths open as if they are meowing

or expecting something, perhaps food or a treat, which is a common reason for cats

to gather and look up like this.

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 32

Theorem Proving and LLMs

=a(x-b)2+c

3 : : ;
2x*+3x+4=y 2 L 6
/a\ log1=0 /[_|

e
S kednet)
S

fex=aCayrbmmaxeh) ,b(xw/)",é "Ck M
RN

Mathematical reasoning
with LLMs

9/5/2024

fmm———————

|
I Theorem proving |
|

e

Tutorial on Neuro-Symbolic Theorem Proving with Lean

=} (e){var t=_[e]={};
[1])===!1&&e.stopOnFalse){r=!1;

Po=U. 1r&&(s=t,c(r))}

OFt u=11, },disable:

e: Of P. (
,r={state: (1
omise)?e. (). (n.resolve). (n.re

(
n=n.

n},always:

)re .cssText=
)),hrefNormalized:

Code generation
with LLMs

33

Theorem Proving and LLMs

e A y=a(x-b)2+c

2,(’.,3“4:\/"[‘ - S . . e e . .y
0g,1=0 r

S kedn@e1)
o1 2

#3¢ Log(p)
7=314

o |
fExmaCx)+hm@reb) T Azt "=; e .
; x l Theorem proving |

e

Mathematical reasoning
with LLMs

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

Mathematical Reasoning with LLMs

* GPT-4 scored 89th percentile on SAT Math

gpt-4

gpt-4 (no vision)
gpt3.5 W

Exam results (ordered by GPT-3.5 performance)

Estimated percentile lower bound (among test takers)

100% —

I
g
w©

60% —

40% —

20% —

0%

Exam

35

Tutorial on Neuro-Symbolic Theorem Proving with Lean

9/5/2024

Mathematical Reasoning with LLMs

* GPT-4 scored 89th percentile on SAT Math

* Specialized math LLMs: Minerva, MetaMath, WizardMath, MAmmoTH, Llemma

Question: For every a, b, b # a prove that
a’ + b? % a+b\?
2 2 '

Model output:

a23—b2 S (a+b)2

2 2 2 2
a“+b a“+b*+2ab
— = > 1

= a® + b? > Lxbli2ab

<= 2a°% + 2b° > a® + b® + 2ab
< a® +b* > 2ab

= a’+b*—2ab>0

<~ (a—0)>>0

which is true, because the square of a real
number is positive.

[Lewkowycz et al., Minerva, 2022]

9/5/2024

Input:
Llfl:lt)l)l"(r) =3 L =L+ L+ + b Find 350, f(k)
- i=2 47 — 27 ar 20087 k=2 .

LLEMMA 34B solution:

We have
oo oo 2008 1 2008 oo 1 20081 o0 1
Zf(k)=zzj—k=zzj—k=zj—zzj—k=
k=2 k=2 j=2 j=2 k=2 j=2 k=0 j
_2&08 1 _2008(1 _l)
i1 gm\i-1
B T T N (R
1 2 2 3 2007 2008
1
_1_2008
| 2007
~ 12008 |

Final Answer: The final answer is 2007.

[Azerbayev et al., LIemma, 2023]

Tutorial on Neuro-Symbolic Theorem Proving with Lean

36

Informal vs. Formal Mathematical Reasoning

ChatGPT 4 -

How can | help you today?

Show me a code snippet Plan a trip

Design a database schema Give me ideas

@ Prove that the greatest common divisor of any natural number n and itsgifis n. ¢

gcd_self (n : N) : gcd nn=n

gcd n
[gcd]
gcd ' [mOd_Self]
[mod_self] gcd
gcd

4 X

Important for LLMs to tackle advanced mathematics

 Grounded in environments that can provide feedback

* Simple and rigorous evaluation: formal proofs can be
checked (no hallucination)

Informal <

9/5/2024

> Formal

Tutorial on Neuro-Symbolic Theorem Proving with Lean 37

Checking Mathematical Proofs is Hard for Humans

—Ii;'—Ouanta

Titans of Mathematics Clash Over Epic
Proof of ABC Conjecture

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

38

Theorem Proving and LLMs

e A y=a(x-b)2+c

2,(’.,3“4:\/"[‘ - S . . e e . .y
0g,1=0 r

S kedn@e1)
o1 2

#3¢ Log(p)
7=314

o |
fExmaCx)+hm@reb) T Azt "=; e .
; x l Theorem proving |

e

Mathematical reasoning
with LLMs

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

Theorem Proving and LLMs

fmm———————

|
<—| Theorem proving p—
|

e

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

={}h Fle){vor t=_[el={}; b.
[1])===!18&e.stopOnFalse){r=!1; In=!1,us

Po=u. 1r&&(s=t,c(r))} }, remove

(OF u=[1, },disable: ()
e: Of p. (

,r={state: ()4 ni,always:

omise)?e. (). (n.resolve). (n.re

((){n=s},t[1%e][2].disable,t[2] [2].
,n=h. (= i

(r);r>t;t++)n[t]1&sh.

)[o],r. .cssText=
()),hrefNormalized:

Code generation
with LLMs

40

Code Generation with LLMs

ged (x : int, y : int) —= int:

"""Compute the greatest common divisor of x and 'y .
>>> gcd(1@, 5)

J

»>>> gcd(2, 3)

1

>>> gcd(8, 12)

il

& GitHub Copilot

Tutorial on Neuro-Symbolic Theorem Proving with Lean

Passing a few testing examples # correctness

9/5/2024 41

Code Generation with LLMs

What if x and y are negative?

ged (x : int, y : int) —= int:

"""Compute the greatest common divisor of x and 'y .
>>> gcd(1@, 5)

J

»>>> gcd(2, 3)

1

>>> gcd(8, 12)

il

& GitHub Copilot

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 42

Passing a few testing examples # correctness

COd e G ene ratlo N Wlt h LLM S Traceback (most recent call last)

def ged (x : int, y : int) — int:
"""Compute the greatest common divisor of
>>> gcd(1@, 5)
X
2 Vi
cdi{x, v % x)
>>> gcd(2, 3) ged(x % y, y)
1
>>> gcd(8, 12)
il

X
min

cdi{x, v % x)
ged{x % y, y)
, in
{x : , ¥

@ GitHub Copllo‘t : maximum recursion depth exceeded in comparison

Passing a few testing examples # correctness

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 43

How Can We Trust Al-Generated Code?

Freethink*

GitHub CEO says Copilot will write 80%
of code “soonerthan later”

Theorem Proving for Verified Code Generation

e Generate code + formal specification (theorem) + formal proof

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

/

| def abs (x : Z) :

I Code if x < @ then -x else x
\ Codegeneration — — — = = - - = - = = = = = = =

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

45

Theorem Proving for Verified Code Generation

e Generate code + formal specification (theorem) + formal proof

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

4
-
[Code
|
I VCodegeneratioN — = = - - e o e e e e - - -
|
| Specification (Theorem) abs_max (x : Z) : abs x = max X (-x)
|
|
|
|
|
\
Verified Code generation — & & & & & - o - o e — - — - -

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

‘_________

46

Theorem Proving for Verified Code Generation

e Generate code + formal specification (theorem) + formal proof

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

1
7
I Code
| 1
I VCodegeneratioN — = = - - e o e e e e - - -
I
| Specification (Theorem) abs_max (x : Z) : abs x = max X (-x)
I
| by _cases h : x < 0 <;> simp [abs, h]
| Proof 1 X < =X = simp_all
I rw [max_eq_right_of_1t this]
| : =X = X = simp_all
\ rw [max_eq_left this]
Verified Code generation — & @ & o o — — m - e - - m _ — - — — -

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

‘_________

47

Theorem Proving and LLMs: Takeaways

=} (e){ t=_[el={}; b.
[1])===!1&&e.stopOnFalse){r=!1; In=11,u8
r - o o oy Po=U. ir&&(s=t,c(r))} }, remove
| OFt u=[], },disable: ()

. e: 0O Ps (this,

Theorem prOV|ng ,r={state: (){ n},always:
omise)?e. () (n.resolve). (n.re
L G | ((){n=s},t[1%e] [2].disable, t[2] [2].
. 5 —" . S S S S e e . , ,n=h. (),r=n. yi= !::r||E&
r),l= (r);r>t;t++)n[t]1&sh. (n[t

(a-b-c)2=a2+b2+¢2-2ab+2bc-2ca
yasine

T

)[o],r. .cssText=
(r. ()),hrefNormalized:

' e BB
Rrb(ash)@2-ab+b2) (€)-g7-g (3] (2

Mathematical reasoning Code generation
with LLMs with LLMs

* Elementary math -> advanced math

* Verified code generation
* Feedback & evaluation at scale: Al mathematicians/programmers

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 48

Theorem Proving and LLMs: Takeaways

//

Machine learning < » Proof assistants

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

49

How to Prove Theorems (with Machine Learning)?

Proof Assistants (Interactive Theorem Provers)

2L B
<+ — g Proof assistants

—W IDEs for writing formal proofs

Humans

-
-
-
-
-
’—’
-
-
-
’————————’

/ Theorem set_inter comm (s t : Set a) : s
i ‘ [Set.mem_inter_iff]

E - (xs, xt)

: (xt, xs)

; . (xt, xs)

\ Proof (xs, xt)

——

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 51

Examples of Proof Assistants

X) .
gg', Isabelle g) Coq] Lean
&& /3 (Nipkow et al., 2002] _(i’ [Barras et al., 1997]

[de Moura et al., 2015]

e Large formal libraries: ~250K * >100K proofs in different repos e ~100K proofs in Mathlib
proofs * Popular for software verification, e.g., e Liquid tensor experiment
CompCert [Leroy et al., 2016] [Commelin, 2022]

* Polynomial Freiman-Ruzsa
conjecture (led by Terence Tao)

Examples of Proof Assistants

e Large formal libraries: ~250K
proofs

[First et al., Baldur, 2023]

[Jiang et al., Thor, 2022]

[Mikuta et al., Magnushammer, 2023]
[Jiang et al., DSP, 2023]

[Wu et al., Autoformalization, 2022]

[Li et al., IsarStep, 2021]

[Wang and Xin et al., LEGO-Prover, 2023]

[Barras et al., 1997]

! Coq
j)

>100K proofs in different repos
Popular for software verification, e.g.,
CompCert [Leroy et al., 2016]

[Huang et al., GamePad, 2018]

[Yang and Deng, CoqGym, 2019]

[Sivaraman, et al., Lemma Synthesis, 2022]
[Sanchez-Stern et al., Proverbot9001, 2020]
[Ringer et al., REPLica, 2020]

[Sanchez-Stern and First et al., Passport, 2023]

-

Lean
[de Moura et al., 2015]

~100K proofs in Mathlib

Liquid tensor experiment
[Commelin, 2022]

Polynomial Freiman-Ruzsa
conjecture (led by Terence Tao)

[Han et al., PACT, 2022]

[Polu et al., 2023]

[Lample et al., HTPS 2022]
[Want et al., DT-Solver, 2023]
[Yang et al., LeanDojo, 2023]
[Thakur et al., COPRA, 2023]

Examples of Proof Assistants

Isabelle
[Nipkow et al., 2002]

e Large formal libraries: ~250K
proofs

[First et al., Baldur, 2023]

[Jiang et al., Thor, 2022]

[Mikuta et al., Magnushammer, 2023]
[Jiang et al., DSP, 2023]

[Wu et al., Autoformalization, 2022]

[Li et al., IsarStep, 2021]

[Wang and Xin et al., LEGO-Prover, 2023]

9/5/2024

Coq

[Barras et al., 1997]

| l)
i/

—
>100K proofs in different repos

Popular for software verification, e.g.,
CompCert [Leroy et al., 2016]

[Huang et al., GamePad, 2018]

[Yang and Deng, CoqGym, 2019]

[Sivaraman, et al., Lemma Synthesis, 2022]
[Sanchez-Stern et al., Proverbot9001, 2020]
[Ringer et al., REPLica, 2020]

[Sanchez-Stern and First et al., Passport, 2023]

Tutorial on Neuro-Symbolic Theorem Proving with Lean

-

Lean
[de Moura et al., 2015]

~100K proofs in Mathlib

Liquid tensor experiment
[Commelin, 2022]

Polynomial Freiman-Ruzsa
conjecture (led by Terence Tao)

[Han et al., PACT, 2022]

[Polu et al., 2023]

[Lample et al., HTPS 2022]
[Want et al., DT-Solver, 2023]
[Yang et al., LeanDojo, 2023]
[Thakur et al., COPRA, 2023]

54

Proving Theorems Using Language Models

Input: Theorem

Output: Proof

9/5/2024

theorem add abc : Yabc : N, a+b+c=a+c+b

intro a b ¢

rw [Nat.

Tutorial on Neuro-Symbolic Theorem Proving with Lean

55

Generating Proof Steps (Tactics)

theorem add_abc : Vabc: N, a+b+c=a+c+b:

intro a b ¢

rw [Nat.add_right_comm]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

56

Generating Proof Steps (Tactics)

theorem add_abc : Vabc: N, a+b+c=a+c+b:

intro a b ¢

rw [Nat.add_right_comm]

Proof state

FV(abc:N),a+b+c=a+c+b

9/5/2024

Tutorial on Neuro-Symbolic Theorem Proving with Lean

57

Generating Proof Steps (Tactics)

theorem add_abc : V a b c :

intro a b ¢

rw [Nat.add_right_comm]

Proof state

Tactic

FV(abc:N),a+b+c=a+c+b

introabc

N, a+b+c=a+c+b:

9/5/2024

\ 4

abc: N
Fa+b+c=a+c+b

Tutorial on Neuro-Symbolic Theorem Proving with Lean

58

Generating Proof Steps (Tactics)

theorem add_abc : V a b c :

intro a b ¢

N, a+b+c=a+c+b:

rw [Nat.add_right_comm]

Proof state

Tactic

FV(abc:N),a+b+c=a+c+b

introabc

9/5/2024

\ 4

abc: N
Fa+b+c=a+c+b

rw [Nat.add_right comm]

Tutorial on Neuro-Symbolic Theorem Proving with Lean

n
»

4

59

Generating Proof Steps (Tactics)

theorem add_abc : Vabc: N, a+b+c=a+c+b:
intro a b ¢

rw [Nat.add_right_comm]

Tactic generator

Input: Proof state Output: Tactic

introabc

\ 4

FV(abc:N),a+b+c=a+c+b

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 60

Generating Proof Steps (Tactics)

theorem add_abc : Vabc: N, a+b+c=a+c+b:

intro a b ¢

rw [Nat.add_right_comm]

norm_cast

FV(abc:N),a+b+c=a+c+b

introabc

\ 4

9/5/2024

\ apply Nat.rec

Tutorial on Neuro-Symbolic Theorem Proving with Lean

61

Searching for Proofs

theorem add_abc : YV a b c : N,

intro a b ¢

rw [Nat.add_right_comm]

a+b+c=a+c+b:

norm_cast

introabc

FV(abc:N),a+b+c=a+c+b

\ 4

9/5/2024

\

apply Nat.rec

abc: N
Fa+b+c=a+c+b

norm_cast

rw [Nat.add_right comm]

Tutorial on Neuro-Symbolic Theorem Proving with Lean

\\\\‘ apply Nat.rec

n
»

Y

62

Searching for Proofs

theorem add_abc : Vabc: N, a+b+c=a+c+b:

intro a b ¢

rw [Nat.add_right_comm]

Classical proof search algorithms

Depth first search (DFS)
Breadth first search (BFS)

FV(abc:N),a+b+c=a+c+b

introabc abc N

Fa+b+c=a+c+b

9/5/2024

rw [Nat.add_right_comm]

Tutorial on Neuro-Symbolic Theorem Proving with Lean

.y

63

We’ve successtully built a simple prover!
... NOW what?

Q v @ &

Proof search Premise Reinforcement Synthetic data
selection Learning generation

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 64

Best First Search

- - * Explore the most promising node

- Use accumulated scores from the tactic
generator to rank the nodes
-
= e

-
-

-
-

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

Best First Search

-0.05

9/5/2024

* Explore the most promising node
e * Use accumulated scores from the tactic
generator to rank the nodes
-
-0.1 +(-0.05) = -0.15
-
-
-

Tutorial on Neuro-Symbolic Theorem Proving with Lean

66

Best First Search

... . .
* Explore the most promising node
..
... e Use accumulated scores from the tactic
generator to rank the nodes
...]]
R * Simple and widely used
= =
N [Han et al., PACT, ICLR 2022]
- [Polu et al., ICLR 2023]
[Jiang et al., Thor, NeurlPS 2022]
|_ [Yang et al., LeanDojo, NeurlPS 2023]
..
..

[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurlPS 2022]

Hyper Tree Proof Search

* Inspired by Monte Carlo Tree Search (MCTS)

e Update visit counts and estimated values for each node

[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurlPS 2022]

Hyper Tree Proof Search

* Inspired by Monte Carlo Tree Search (MCTS)

e Update visit counts and estimated values for each node

Selection
N(g,tg)=1 N(g,t)|=1 N (g, tz)=0
W(g,te)=0.3 W(g,t1)]=0.5 W(g,t2)=0.1

Q9

N (gg, to) =0
W(go,to) =0

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 69

[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurlPS 2022]

Hyper Tree Proof Search

* Inspired by Monte Carlo Tree Search (MCTS)

e Update visit counts and estimated values for each node

Selection Expansion
N(g,te)=1 N(g,t1)f=1 N (g, t2)=0
W(g,to)=0.3 W(g,t1)]=0.5 W(g,t2)=0.1

W(go,to) =0

B9 Q0
| |

| |

N (g4r t1)=0
W (g4, t1)=0

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 70

[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurlPS 2022]

Hyper Tree Proof Search

* Inspired by Monte Carlo Tree Search (MCTS)

e Update visit counts and estimated values for each node

Selection Expansion Back-propagation
O ve(g)=(1x0.1)x0.4
N(g,to) =1 N(g, ti)j=1 N (g, t2)=0 N (g, t1) =2
W(g,to)=0.3 W(g, t1)]=0.5 W(g,tz)=0.1 W(g’t)0 54 (1x0.1) x0. 4
rC1) =0 xU.1l)xU.
Q Q Q Q Ve (go)=1x0.1 Q vr(g1)=0.4
N (go, to) =0
W (gg, to) =0 N (go, to) =1 N(gi,to)=1
W(go,to)=1x0.1 W(g1,te)=0.4
vr(gz) =1 -0.4
Ve (ge) =0.1 vr(g4) =0.
N(g4rt1)20
W(gs, t1) =0
9/5/2024

Tutorial on Neuro-Symbolic Theorem Proving with Lean 71

[First et al., "Baldur: Whole-Proof Generation and Repair with Large Language Models", FSE 2023]

s Proof Search Really Necessary?

e Baldur: It’s possible to build state-of-the-art provers without search

6B and 62B models finetuned from Minerva on Isabelle proofs

Input:
<THEOREM> Theorem Statement <PROOF>

!

[Proof Generation Model]

y

Candidate Proof

!

Isabelle
(Proof Assistant)

No error Error

Success Failure

theorem add_abc : Vabc: N, a+b+c=a+c+b:

intro a b ¢

Premise Selection w [Nat. add_right_comn

* Premise selection: A key challenge in theorem proving

» Studied as a separate task w/o theorem proving

[Irving et al., DeepMath, NeurlPS 2016]
[Wang et al., "Premise Selection for Theorem Proving by Deep Graph Embedding", NeurlPS 2017]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 73

[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

Magnushammer

* Premises selected by Transformer + a simple symbolic prover

Available Proof State

Premises

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 74

[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

Magnushammer

* Premises selected by Transformer + a simple neuro-symbolic prover

W Proof Stgte
|| Embedding Embedding

1)
SELECT Premise SELECT State
Projection Projection
Transformer Transformer
Backbone Backbone

Available Proof State
Premises

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 75

[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

Magnushammer

* Premises selected by Transformer + a simple neuro-symbolic prover

Ordered
Premises
(SELECT)

T

HF’ s?rﬁﬁ::ﬁy “‘

Premise Proof Stgte
Embedding Embedding

‘ £

SELECT Premise SELECT State
Projection Projection

T 1

Transformer Transformer
Backbone Backbone

Available Proof State
Premises

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 76

[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

Magnushammer

* Premises selected by Transformer + a simple neuro-symbolic prover

Ordered Ordered
Premises Premises
(SELECT) (RERANK)

T Textual T

representation

e S(i:nﬁ;nn‘e;y 4_‘ of top premises Sigmoid
[X
Premise Proof State
Embedding Embedding
1)
SELECT Premise SELECT State RERANK
Projection Projection Projection
Transformer Transformer Transformer
Backbone Backbone Backbone
1

Proof State | Premise

N

Available Proof State
Premises

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 77

[Mikuta et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

Magnushammer

* Premises selected by Transformer + a simple neuro-symbolic prover

Ordered Ordered

Premises Premises
(SELECT) (RERANK) 60 "

T Textual T b4 x
Cosine representation 50 xaxx
H . . “
PT) Similarity 4—‘ of top premises Sigmoid . ,‘x"x
(=]
. i S 40 o
u Premise Proof State g9
Emb:dding Embedding 2 20 % R
£ S5 A
i A
SELECT Premise SELECT State RERANK 2 " ALLA
Projection Projection Projection 2 50 ‘_)AL‘—‘
T T A # Magnushammer
Sledgehammer
Transformer Transformer Transformer 10 A A BM25

Backbone Backbone Backbone

£ 0 100 200 300 400 500 600 700 800
' 5 Compute Budget

Proof State | Premise

N

Available Proof State
Premises

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 78

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

k:N

State | oed ((k+1) % (k+1)) (k+1) =k+1

All accessible premises
in the math library

theorem mod_self (n : nat) : n 4 n = 0

theorem gecd_zero_left (x : mat) : ged 0 x = x

33K on average

def gcd : nat - nat - nat

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 79

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

k:N
Fged((k+1)%(k+1)) (k+1)=k+1
All accessible premises

in the math library

theorem mod_self (n : nat) : n 4 n = 0 Encoder
theorem gecd_zero_left (x : mat) : ged 0 x = x Encoder
Maximum

33K on average : cosine similarity

def ged : nat - nat - nat Encoder

State

ﬁ

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 80

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

k:N
Fged((k+1)%(k+1)) (k+1)=k+1
All accessible premises

in the math library

State

theorem mod_self (n : nat) : n 4 n = 0 —’|M>—’
th d_ _left (x : nat) : ged 0 x = —-—' m , .
eorern [ged-zero-20 * oo &¢ o theorem mod_1t (x : nat) {y : nat} (h : 0 <y) : x hy <y
) M3X|!'T1L_|m_ theorem mod_self (n : nat) : n % n =0
33K on average : cosine similarity theorem mod_eq_of_1t {a b : nat} (h : a <b) : a)b=a
theorem zero_mod (b : nat) : 0 % b =0
°f B ¢ nat o nat o na Retrieved premises

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 81

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

* Retrieved premises are concatenated with the state and used for tactic generation

k:N
State | oed ((k+1) % (k+1)) (k+1) =k+1 —1 Concat
All accessible premises

in the math library

theorem mod_self (n : nat) : n 4 n = 0 Encoder

th d_ _left (x : nat) : ged 0 x = —-—' m .
eorern [ged-zero-20 * oo &¢ o theorem mod_1t (x : nat) {y : nat} (h : 0 <y) : x hy <y
) M3X|!'T1L_|m_ theorem mod_self (n : nat) : n % n =0
33K on average : cosine similarity theorem mod_eq_of_1t {a b : nat} (h : a <b) : a)b=a
theorem zero_mod (b : nat) : 0 % b =0
def ged : nat t t _>-_. . .
°f B ¢ nat o nat o na Retrieved premises

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 82

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

* Given a state, we retrieve premises from accessible premises

* Retrieved premises are concatenated with the state and used for tactic generation

N —{Gonea>—] > rew
State ged (k+1) % (k+1)) (k+1) =k +1 Corjcat Encoder-decoder rewrite mod_self

[

All accessible premises

Tactic
in the math library

theorem mod_self (n : nat) : n 4 n = 0 Encoder

th d_ _left (x : nat) : ged 0 x = —-—' m .
eorern [ged-zero-20 * oo &¢ o theorem mod_1t (x : nat) {y : nat} (h : 0 <y) : x hy <y
) M3X|!'T1L_|m_ theorem mod_self (n : nat) : n % n =0
33K on average : cosine similarity theorem mod_eq_of_1t {a b : nat} (h : a <b) : a)b=a
theorem zero_mod (b : nat) : 0 % b =0
def ged : nat t t _>-_. . .
°f B ¢ nat o nat o na Retrieved premises

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 83

&0

50

40

30

20

10

9/5/2024

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurlPS 2023]

ReProver: Retrieval-Augmented Prover

Percentage of Theorems Proved

51.4

47.5

288

5.4

random

Etidy MBGPT-4 HEReProver w/fo retrieval

7.5

novel premises

22.9

B ReProver

26.2

Method random novel_premises
tidy 23.8 5.3
GPT-4 29.0 7.4
ReProver (ours) 51.2 26.3

w/o retrieval 47.6 23.2

Tutorial on Neuro-Symbolic Theorem Proving with Lean

84

Reinforcement Learning

* Specialized domains without sufficient existing proofs for training, e.g., MiniF2F

* LLMs perform badly on out-of-domain data

[Bansal et al., "Learning to Reason in Large Theories without Imitation®, arXiv 2020]
[Wu et al., "TacticZero: Learning to Prove Theorems from Scratch with Deep
Reinforcement Learning”, NeurlPS 2021]

[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurlPS 2022]
[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]

Expert Iteration

* Specialized domains without sufficient existing proofs for training, e.g., MiniF2F

* LLMs perform badly on out-of-domain data

@ OpenAl M

formal math olympiad

[Bansal et al., "Learning to Reason in Large Theories without Imitation®, arXiv 2020]
[Wu et al., "TacticZero: Learning to Prove Theorems from Scratch with Deep
Reinforcement Learning”, NeurlPS 2021]

[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurlPS 2022]
[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]

[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]

@OpenAl

Expert Iteration some) formal math olympiad

* Specialized domains without sufficient existing proofs for training, e.g., MiniF2F
* LLMs perform badly on out-of-domain data

e Solution: Iteratively improve the prover on the new domain

1. Train the prover
2. Use the prover to find new proofs
3. Add new proofs to the training data and go back to step 1

Model d e pass@] pass@8 Model d e pass@] pass@8

mathlib-valid miniF2F-valid

PACT 512 16 48.4% miniF2F 128 16 23.9% 29.3%
0o 512 16 48.5% 57.6% 0, 128 16 27.6% 31.8%
6o 512 8 46.7% 57.5% 0o 512 8 28.4% 33.6%

01 512 8 56.3% 66.3 % 01 512 8 28.5% 35.5%

Wait! There’s something left out...

[Zheng et al., "MiniF2F: A Cross-System Benchmark for Formal Olympiad-Level Mathematics", 2022]

MiniF2F Benchmark

* Math olympiads problems from AMC, AIME, IMO, etc.
» 488 theorems (many w/o proof) for evaluation; no training

[Zheng et al., "MiniF2F: A Cross-System Benchmark for Formal Olympiad-Level Mathematics", 2022]

MiniF2F Benchmark

* Math olympiads problems from AMC, AIME, IMO, etc.
» 488 theorems (many w/o proof) for evaluation; no training

* Open problems:
* How to formalize problems asking for numerical answers?

 How to deal with geometry? . oma
Solve for a: v/4 + v/16 + 16a+ v/ 1 + /1 + a = 6. Show that it is 8.

Lean

theorem mathd_algebra_17 3

(a : R)
(ho : real.sqrt (4 + real.sqrt (16 + 16 * a)) + real.sqrt (1 + real.sqrt (1 + a))
a=28:=

begin

end

Datasets & Benchmarks

High quality datasets are available for Lean & Coq

)
/ \

VN)

LeanDojo

e 98,641 theorems and proofs

e 217,639 tactics e 71K human-written proofs

¢ 129,162 premises * Ranging among 123 projects
[Yang et al., "LeanDojo: Theorem Proving with [Yang et al., "Learning to Prove Theorems via
Retrieval-Augmented Language Models", 2023] Interacting with Proof Assistants", 2019]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

91

Data Extraction in LeanDojo

° ASTS, tactics] data/nat/lemmas.lean

theorem mod_self (n : nat) : n % n =0 :=

(e =) .
e —) begin

* From Lea n’S pa rser = rv [mod_eq_sub_mod (le_refl _), nat.sub_self, zero_mod]|"
Math library |ernd \

* Proof goals ;
data/nat/gcd.lean
¢ From Lean’S |nfOTree def gcd : nat - nat - nat -—gcd z ¥y

| O y i=y -- Case 1: z == 0
* Premises | x+ D) yi=ged (3% (x+ 1) (x+ 1) - Case 2: 2 > 0

theorem gcd_zero_left (x : mnat) : gcd O x = x := begin simp [gcd] end

* Definitions, lemmas, etc.
. theorem gcd_self (n : nat) : gcd nn =n := /
* Where they are used/defined begin !

cases n, 4 Import
* Alsoin the InfoTree { unfold ged J,
unfold gcd,
rewrite mod_self,
apply gcd_zero_left
end

Go to Definition

Go to Declaration

Go to Type Definition

Go to References

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 92

Programmatical Interaction in LeanDojo

* Replace the human-written proof with a single repl tactic

* repl performs IO to provide a command line interface for interacting with Lean

* Wrap the interface in any language, e.g., Python

data/nat/gcd.lean

def gcd : nat - nat - nat -—gcd z ¥y
| 0 y =y -- Case 1: z == 0
| (x+ 1)y :=ged (y% (x+ 1)) (x+ 1) --Case 2: z >0

theorem gcd_zero_left (x : nat) : gcd O x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd nn =n :=

begin
>
ﬁ — ' |>- repl

end

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

[Han et al., "Proof Artifact Co-training for Theorem Proving with Language Models", 2022]

Proof Artifact Co-training

* LLMs are data-hungry, but human-written proofs are limited (~100K proofs in mathlib)

* 9 auxiliary tasks

Next lemma prediction: Proof goal -> the next lemma to be applied
Type prediction: Partial proof term -> its type

Theorem naming: theorem statement -> its name

[Han et al., "Proof Artifact Co-training for Theorem Proving with Language Models", 2022]

Proof Artifact Co-training

* LLMs are data-hungry, but human-written proofs are limited (~100K proofs in mathlib)

* 9 auxiliary tasks

Next lemma prediction: Proof goal -> the next lemma to be applied
Type prediction: Partial proof term -> its type

Theorem naming: theorem statement -> its name

Tokens

Model elapsed mixl mix2 tactic Pass-rate
Baselines

refl 1.1%
tidy-bfs 9.9%
WebMath > tactic 1B 1.02 32.2%
Co-training (PACT)

WebMath > mixl + tactic 18B 0.08 0.94 40.0%
WebMath > mix2 + tactic 75B 0.09 0.93 46.0%
WebMath > mixl + mix2 + tactic 71B 0.09 0.09 0.91 48.4%

* Key insight: Training on tactic generation + auxiliary tasks is better than tactic generation alone

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 95

[Wu et al., "Autoformalization with Large Language Models", 2022]
[Jiang et al., “Multilingual Mathematical Autoformalization”, 2023]

Autoformalization , \

Case Study 2 Question:

Natural Language version: "When all
the girls at Madeline’s school line up
in rows of eight, there are seven left
over. If instead they line up in rows of

e LLMs translate informal math into formal math T e et
guage version to an Isabelle version:

* Evaluation can be hard PaLM output:
theorem

fixesn: :nat
assumes "nmod 8=7"
shows "nmod 4 = 3"

Isabelle statement GPT-4 informalisation

\. J
lemma eintminus_le: The lemma named “eint_minus_le” assumes that an
assumes "(b::eint) < a" extended integer “b” is less than another extended
shows "c - b > 0" integer “c”. It then shows that the result of “c”
subtracted by “b" is greater than zero. (. h
Case Study 3 Question:
ot . e, . . . e . Natural language version: "Let f be a linear
leinma closed superdiagonal: The set of all pairs of elen'fems' (%, ¥) huc:_h that x is function for which f(6) — f(2) = 12. What is
::lr_:-sed. {(x,v) | x y. = > (y:: greater than or equal to y, is a closed set in the F(12) — f(2)? The final answer is 30." Trans-
(fa::{linorder_topology}}}}" context of a linearly ordered topology. late the natural language version to an Isabelle
Leand statement GPT-4 informalisation version:
theorem norm_eq.one_of_pow_eg.one For a complex number ¢ and a natural number n, if Sgdex output:
. . i 4 eorem
C:CHf{n:My(h:("=1(hn:n+0) ¢ to the power of n equals 1 and n is not equal to 0, . .
ﬁ ¢ ”=Jl l{'= } then the norm of ¢ is equal to 1 fixes f :: "real \<Rightarrow>real"
’ ’ ' assumes "linear f"
"f6-f2=12"
theorem mul dvdmul iff left For any three natural numbers a, b, and c, where a shows "f 12 - £ 2 = 30"
{abe:M}(ha:0<a):a*xb|axc is greater than 0, a times b divides a times c if and L)
ble:= only if b divides c.

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 96

Alpha Proof

Train

Informal ' Formal i Formal
problems Fomaliae problems ; proofs
M Formalizer ~100M Solver
network network
e AlphaZero °

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 97

[Murphy et al., "Autoformalizing Euclidean Geometry", 2024]

Logic Systems for Specific domains

Proposition 1 theorem proposition_1l : ¥ (a b : Point) (AB : Linel,
To construct an equilateral triangle on a given finite distinctPointsOnLine a b AB -
straight-fine. . 3¢ : Point, |(c-a)| = [(a=b)| A [(c-b)| = |{a-b)| 22 Equivalent? (
- - _--"':.r:'- S ---""-\. *
p o . / T
r PN ",
VAN Ground truth theorem CVC5 x
f [W y
[|4 ! I
D A E| SMT-based symbolic
|
| I'._ .-"I / theorem proposition_1' : ¥ (a b : Point) (AB : Line), reasoning engine
I"K LY i A a.onLine AB & b.onlLine AB 2 a = b ~
S _:h-c',"_i ____Jf”x 3 c: Point, |{a—c)| = |ic=b)| & |la—<c)| = |(a—b}|

Let AR be the given finite straight-line, a b : Point

Sa it is required to construct an equilateral triangle on Autoformalized theorem AB - Line
the straight-line A8, .

Let the circle B0 with center A and radius 4B have BCD ACE : Circle zg
been drawn [Post. 3], and again let the circle ACE with isCenter a BCD f
center 5 and radins B4 have been drawn [Pose. 3]. And | p—— |
let the straight-lines €' and €'B have been joined from onCircle b BCD CVC5
the point 7, where the circles cut one another, to the by isCenter b ACE]
points A and B (respectively]) [Post. 1. .

And since the point A & the center of the circle C0 8, cuc L%d—mt ros anCircle a ACE
A is equal to AR [Del. 1.15]. Again, since the point euclid_apply circle_from_points a b as BCD I_:[\v/]\l intersects BCD ACE
B is the center of the drele CAE, B s equal o BA : : :

[Def. 1.15]. But (A was also shown (te be) equal to AB. FHE l.ll.d_app'l.",' n:-:lrc le_from_points b a as ACE

Thus, €A and C'B are each equal to AB. But things equal ::} euclid_apply intersection_circles BCD ACE as ¢ |::> zg

to the same thing are also equal to one ancother [CN. 1]. :] : : (
Thuus, A is also equal to €. Thus, the ey E'IJC].J..d_EIppl",' pm..nt_{:n_c:!.rcle_unlw..f a b c BCD . W

lines) A, AR, and B are equal to one another euclid_apply point_on_circle_onlyif b a ¢ ACE I f

Thus, the mangle ABC is equilateral, and has been Use ©
constructed on the given finite straight-line AR, (Which
i) the very thing it was required to do, euclid_finish

Informal Euclidean geometry problem Autoformalized proof Diagrammatic reasoning gaps

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 98

Logic Systems for Specific domains

* Alpha Geometry - Alpha Geometry 2

A simple problem

B C

lheorem premises.

Frove that angie (2) ABC= 2BCA

Let ABC be any triangle with AB=AC

AlphaGeometry

(Y
[ﬁ,: Language model J

~

Add a Not
construct --.---.-. solved

9/5/2024

Solution

= D C

~

« Canstruct D: midpoint BC

4 ABD= #DCA, B C D collinear =

’ L ABC=ZBCA

- . Solved l o AB=AC, BD=BC, AC=AD = ZABD= £LDCA
£ Symbolic engine SN

Tutorial on Neuro-Symbolic Theorem Proving with Lean

99

Bridging Machine Learning and Theorem Proving

Machine learning researchers work on theorem proving

Lean Machine learning model

Bridging Machine Learning and Theorem Proving

Machine learning researchers work on theorem proving

Lean < Machine learning model

Learning-based proof automation tools for Lean users

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 101

Bridging Machine Learning and Theorem Proving

Machine learning researchers work on theorem proving

Lean < Machine learning model

Learning-based proof automation tools for Lean users

* Run on CPUs reasonably fast
* Integrated into VSCode

e Care about a specific domain, not aggregated performance on mathlib

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 102

Tools for Interfacing with GPT-4

Sagredo: automated dialogue between GPT and Lean.

test > Sagredo £ List_append_length.lean > §J example
t Mathlib.Tactic.GPT.Sagredo.Widget
t Mathlib.Algebra.Order.Ring.Abs
t Mathlib.Data.Nat.Order.Basic
t Mathlib.Tactic.Ring

n List

I
> (¢ : Type) (LM : List a) : (L ++ M ++ L).length = (M ++ L ++ L).length

List_append_length.lean — mathlib4-2

®

v List_append_length.lean:9:6
¥ Tactic state
No goals

v Sagredo B Auto-send

| am going to show you an incomplete proof and the accompanying goal
state. | will ask you to complete the proof step by step, adding one
tactic step in each response.

Here is the proof thus far:

example (a : Type) (LM : List @) : (L ++ M ++ L).length =
(M ++ L ++ L).length := by
sorry

» All Messages (0)

[Morrison et al., “Sagredo: automated dialogue between GPT and Lean”]
https://www.youtube.com/watch?v=CEWRMTOGpKo

9/5/2024

Tutorial on Neuro-Symbolic Theorem Proving with Lean

103

https://www.youtube.com/watch?v=CEwRMT0GpKo

ChatGPT Plugin for Theorem Proving in Lean

GPT-4 currently has a cap of 25 messages every 3 hours.

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT Ma

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 104

Tools for Premise Selection

* Built-in tactics such as library_search, apply?, exact?

@ github.com

:= README.md

Premise selection for Lean

ene TacticTest.lean — lean-premise-selection DB m o
HwE o ® M x ean Infoview
¥ TacticTest lean:12:10 © 1D
¥ Tactic state € L 7
Wi Type u
inst # 1 RightCancelMonaid N
L

) ' rasbebea=i
variable {H : Type u} [RightCancelionaid M1 {2 b : W)} wPromise Selection

example s b=aebeea=1o=byf & show failed suggestions.

r leq cons eq_comm B rw [eqcomm] - b=asbeas1
suggest Jremises fmul_left_eq_self # apply mul_left_eq_self
] , e X
| @nul_right_cancel iff X
wariable [CoanSenigroup 6] Bnul_ene x
Bnul_leFt_cancel iff X
exanple sV abc:B, as(bsch=bs(axc)i by @dnd. intro X "
, 0 AIff.intro @apply Iff.intro- a+b=b—a=1
:nLra'.ti bc @nul_right_eq_self X
suggest_premises
apply nul_left_coan Qe rfl X
y nitsml leftinj X

@le_nul_of_le_of_one_le X
a=by i @le_antisym X
Ale_mul_of_one_le_of_le X
finished checking 14 items
» All Messages (4) I

[Piotrowski et al. "Machine-Learned Premise Selection for Lean"]
https://github.com/BartoszPiotrowski/lean-premise-selection

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 105

https://github.com/BartoszPiotrowski/lean-premise-selection

Tools for Tactic Suggestion

: Monotone f =¥ n, fn=s ™ (n+ 1) := by

¥ Examples.lean:43:2
¥ Tactic state
-

Ao R

Monotone f = ¥ (n : N), f n=sf (n + 1)

» All Messages (2)

[Welleck and Saha, “limstep: LLM proofstep suggestions in Lean”]
https://github.com/wellecks/IImstep

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 106

https://github.com/wellecks/llmstep

Lea N CO p | | Ot TOO | I(|t Easy to install just like any Lean package

Run locally on most laptops w/o GPUs
Respond in seconds

Tactic suggestion

|
Locally with |
CTranslate2 I
I
I
|

Premise selection

[Song et al., "Towards Large Language Models as Copilots for Theorem Proving in Lean”, NeurlPS MATH-AI, 2023]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 107

Ta Ct | C S U ggeSt | on Easy to install just like any Lean package

Run locally on most laptops w/o GPUs
Respond in seconds

import LeanCopilot ¥ Tactic state
No goals

theorem add_abc (a b c : Nat) : a+b+c=a+c+b:=bhy —I v Suggestions

| suggest_tactics Try these:

« apply Nat.add_right_comm

« rw [Nat.add_assoc]
Remaining subgoals:
Fa+(b+c)=a+c+b

« rw [Nat.add_comm]
Remaining subgoals:
Fc+(a+b)=a+c+b

o simp [Nat.add_assoc]
Remaining subgoals:
Fa+(b+c)=a+ (c+Db)

[Song et al., "Towards Large Language Models as Copilots for Theorem Proving in Lean”, NeurlPS MATH-AI, 2023]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean 108

P 'O Of Se alrC h Easy to install just like any Lean package

Run locally on most laptops w/o GPUs

Respond in seconds

import LeanCopilot ¥ Tactic state

No goals

theorem add_abc (a b c : Nat) : a+b+c=c+b+a :=by 1 ¥ Suggestions

| search,_proof Try this:

simp [Nat.add_comm,
Nat.add_left_comm]

[Song et al., "Towards Large Language Models as Copilots for Theorem Proving in Lean”, NeurlPS MATH-AI, 2023]

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean

109

Premise Selection

9/5/2024

import LeanCopilot

theoremg\ggmg\p\g(abc:Nat):a+b+c=a+c+b:=by_l
select premises

.add_assoc :

.add_comm :

.add_left_comm :

.add_right_comm :

Easy to install just like any Lean package
Run locally on most laptops w/o GPUs
Respond in seconds

YV(nmk:Nat), n+m+k=n+ (m+ k)

YV (nm:Nat), n+m=m+ n
Y{nmk:Nat), n+ (m+ k) =m+ (n + k)

Vinmk:Nat), n+m+k=n+k+m

With rich annotations!

* In-scope premises: provide type information and doc strings
e Qut-of-scope premises: provide complete definition + instruction on usage

[Song et al., "Towards Large Language Models as Copilots for Theorem Proving in Lean”, NeurlPS MATH-AI, 2023]

Tutorial on Neuro-Symbolic Theorem Proving with Lean

110

Bridging Machine Learning and Theorem Proving

Machine learning researchers work on theorem proving

Lean Machine learning model
<€

Learning-based proof automation tools for Lean users

Neuro-Symbolic Theorem Proving with Lean

* LeanDojo: Theorem Proving with Retrieval-Augmented
Language Models

* LeanDojo: Data Extraction & Interaction Tool for Theorem

Machine learning

Proving in Lean

* ReProver: Retrieval-Augmented Language Model as Theorem
Prover

* Towards Large Language Models as Copilots for
Theorem Proving in Lean
* Lean Copilot: Native Machine Learning Toolkit in Lean

* LLM-Powered Tools for Tactic Suggestion, Proof Search &
Premise Selection

Neuro-Symbolic Theorem Proving with Lean

9/5/2024

Peiyang Song

California Institute of Technology

psong@caltech.edu

Tutorial on Neuro-Symbolic Theorem Proving with Lean

113

	Overview
	Slide 0: Neuro-Symbolic Theorem Proving with Lean
	Slide 1
	Slide 2: Computer-Aided Proofs in Mathematics
	Slide 3: Computer-Aided Proofs in Mathematics
	Slide 4: Automated Reasoning and Formal Proofs
	Slide 5: Automated Reasoning and Formal Proofs
	Slide 6: Automated Reasoning and Formal Proofs
	Slide 7: Automated Reasoning and Formal Proofs
	Slide 8: Automated Reasoning and Formal Proofs
	Slide 9: Automated Reasoning and Formal Proofs

	ATP
	Slide 10: Automated Theorem Proving
	Slide 11: Automated Theorem Proving
	Slide 12: Automated Theorem Proving
	Slide 13: Automated Theorem Proving
	Slide 14: Automated Theorem Proving
	Slide 15: Automated Theorem Proving
	Slide 16: Automated Theorem Proving
	Slide 17: Automated Theorem Proving

	ITP
	Slide 18: Interactive Theorem Proving
	Slide 19: Interactive Theorem Proving
	Slide 20: Interactive Theorem Proving
	Slide 21: Interactive Theorem Proving
	Slide 22: Interactive Theorem Proving
	Slide 23: Theorem Proving in Proof Assistants
	Slide 24: Theorem Proving in Proof Assistants
	Slide 25: Theorem Proving in Proof Assistants
	Slide 26: Theorem Proving in Proof Assistants
	Slide 27: Theorem Proving in Proof Assistants
	Slide 28: Theorem Proving in Proof Assistants
	Slide 29: Theorem Proving in Proof Assistants
	Slide 30: Theorem Proving in Proof Assistants

	LLMs
	Slide 31: Why is Theorem Proving Important for AI?
	Slide 32: The Era of Large Language Models (LLMs)
	Slide 33: Theorem Proving and LLMs
	Slide 34: Theorem Proving and LLMs
	Slide 35: Mathematical Reasoning with LLMs
	Slide 36: Mathematical Reasoning with LLMs
	Slide 37: Informal vs. Formal Mathematical Reasoning
	Slide 38: Checking Mathematical Proofs is Hard for Humans
	Slide 39: Theorem Proving and LLMs
	Slide 40: Theorem Proving and LLMs
	Slide 41: Code Generation with LLMs
	Slide 42: Code Generation with LLMs
	Slide 43: Code Generation with LLMs
	Slide 44: How Can We Trust AI-Generated Code?
	Slide 45: Theorem Proving for Verified Code Generation
	Slide 46: Theorem Proving for Verified Code Generation
	Slide 47: Theorem Proving for Verified Code Generation
	Slide 48: Theorem Proving and LLMs: Takeaways
	Slide 49: Theorem Proving and LLMs: Takeaways

	Summary + Lean
	Slide 50: How to Prove Theorems (with Machine Learning)?
	Slide 51: Proof Assistants (Interactive Theorem Provers)
	Slide 52: Examples of Proof Assistants
	Slide 53: Examples of Proof Assistants
	Slide 54: Examples of Proof Assistants

	Simple NTP
	Slide 55: Proving Theorems Using Language Models
	Slide 56: Generating Proof Steps (Tactics)
	Slide 57: Generating Proof Steps (Tactics)
	Slide 58: Generating Proof Steps (Tactics)
	Slide 59: Generating Proof Steps (Tactics)
	Slide 60: Generating Proof Steps (Tactics)
	Slide 61: Generating Proof Steps (Tactics)
	Slide 62: Searching for Proofs
	Slide 63: Searching for Proofs
	Slide 64: We’ve successfully built a simple prover! … now what?

	Proof Search
	Slide 65: Best First Search
	Slide 66: Best First Search
	Slide 67: Best First Search
	Slide 68: Hyper Tree Proof Search
	Slide 69: Hyper Tree Proof Search
	Slide 70: Hyper Tree Proof Search
	Slide 71: Hyper Tree Proof Search
	Slide 72: Is Proof Search Really Necessary?

	Premise Selection
	Slide 73: Premise Selection
	Slide 74: Magnushammer
	Slide 75: Magnushammer
	Slide 76: Magnushammer
	Slide 77: Magnushammer
	Slide 78: Magnushammer
	Slide 79: ReProver: Retrieval-Augmented Prover
	Slide 80: ReProver: Retrieval-Augmented Prover
	Slide 81: ReProver: Retrieval-Augmented Prover
	Slide 82: ReProver: Retrieval-Augmented Prover
	Slide 83: ReProver: Retrieval-Augmented Prover
	Slide 84: ReProver: Retrieval-Augmented Prover

	RL
	Slide 85: Reinforcement Learning
	Slide 86: Expert Iteration
	Slide 87: Expert Iteration

	Data
	Slide 88: Wait! There’s something left out…
	Slide 89: MiniF2F Benchmark
	Slide 90: MiniF2F Benchmark
	Slide 91: Datasets & Benchmarks
	Slide 92: Data Extraction in LeanDojo
	Slide 93: Programmatical Interaction in LeanDojo
	Slide 94: Proof Artifact Co-training
	Slide 95: Proof Artifact Co-training
	Slide 96: Autoformalization
	Slide 97: Alpha Proof
	Slide 98: Logic Systems for Specific domains
	Slide 99: Logic Systems for Specific domains

	Interaction
	Slide 100: Bridging Machine Learning and Theorem Proving
	Slide 101: Bridging Machine Learning and Theorem Proving
	Slide 102: Bridging Machine Learning and Theorem Proving
	Slide 103: Tools for Interfacing with GPT-4
	Slide 104: ChatGPT Plugin for Theorem Proving in Lean
	Slide 105: Tools for Premise Selection
	Slide 106: Tools for Tactic Suggestion
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111: Bridging Machine Learning and Theorem Proving

	Ending
	Slide 112: Neuro-Symbolic Theorem Proving with Lean
	Slide 113: Neuro-Symbolic Theorem Proving with Lean

